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ABSTRACT 

In this paper the explicit 2 and 3-point block method for solving large systems of 
special second order ODEs directly is discussed. Codes based on the methods are 
executed in sequential and parallel. The numerical results show that parallel 
execution of the methods is more efficient compared to sequential counterpart for 
solving the large system of special second order ODEs. 

 

 

INTRODUCTION 

The desire for parallel Initial Value Problem (IVP) solvers arises 

from the need to solve many significant problems faster than is currently 

possible. This is because the computational time on conventional sequential 
machine is so large that it affects the productivity of engineers and 

researchers. 

  
According to Gear and Xuhai (1993) parallelism in IVP solvers can 

be classified into two main categories  

 

• Parallelism across the method or equivalently parallelism across time 

• Parallelism across the system or equivalently parallelism across 

space. 
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Parallelism across the method is the possibility of distributing the 
computational effort of each integration step among the processors. 

Parallelism across the problem is the possibility of partitioning the system 

of equations by assigning one single equation or block of them to a 
processor for concurrent integration. Here we are focusing on the first type 

of parallelism that is parallelism across the method. However most methods 

for solving IVPs are by nature step by step method the approximation to the 

solution of the IVP by methods like Runge-Kutta (RK) and Multistep 
method evolves one point at a time, which makes them less favourable for 

parallel implementation. This situation requires the construction of new 

methods specifically designed for parallel execution. 
 

Burrage (1993) and Cash (1985) have proposed the used of parallel 

Runge-Kutta methods for solving first order ODEs. Cash (1985) derived 

explicit and diagonally implicit block Runge-Kutta method which can be 
exploited for the purpose of parallel implementation. Majid and Suleiman 

(2009) proposed block method for solving first order ODEs which can be 

executed in parallel. In this paper we have developed sequential and parallel 
algorithms based on the method developed by Yap et. al (2008) and used 

them to solve special second order initial value problems. We hope that by 

parallelizing the algorithms, a more effective code can be developed. 
 

 

PROBLEM DESCRIPTION AND OBJECTIVES 

Birta and Abou-Rabia (1987) stated that parallelism across the 

method for the solution of ODEs has its basis in a class of techniques 

referred to as block methods. Block methods have been discussed in detail 
in Majid and Suleiman (2009) and Omar et al. (2002). 

 

Assume that the system to be solved is described by N (the number 

of equations in the system) special second order ODEs of the form 

 

( ),y f x y′′ = , ( )y a η= ,  ( )y a η′ ′= ,    bxa ≤≤ .                     (1) 
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The r-point k-block method for Equation (1) is represented by the 

computation scheme 
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In the explicit r-point block method, the interval [ ]ba,  is divided 

into series of blocks with each block containing r points. Each application 

of the formulae generates a block of r new equally spaced solution values 

simultaneously. The computational tasks at each point within a block are 
sufficiently independent and considered as separate task. Therefore, the 

computation tasks can be performed simultaneously by assigning the tasks 

to different processors. 
 

Yap et al. (2008), have derived the explicit block methods of order 

four based on Newton-Gregory backward difference formula designed for 
special second order ODEs. The methods are: 
 

Explicit 2-Point Block Method: 
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Explicit 3-Point Block Method:  
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PARALLEL IMPLEMENTATION 

Parallel Implementation of the Explicit 2-Point Block Method 

The sequential implementation of the explicit 2-point block method is 

shown in Figure 1. In the sequential algorithm, one processor 0P  ( the first 

processor is always denoted as )0P  is used to calculate the first point 1+n
y  

and followed by the evaluation of the second point 2+n
y . The function 

evaluation 1+n
f  is then computed using 1+n

y  and followed by function 

evaluation 2+n
f  using 2+n

y . 

 

 
 

Figure 1: Sequential Implementation of Explicit 2-Point Block Method 

 

On the other hand, in the parallel algorithm, 1+n
y  and 2+n

y  are 

assigned to two processors 0P  and 1P  as shown in Figure 2. Each processor 

is responsible for computing the assigned y . All function evaluations are 

performed simultaneously.  

 

 

 

1+n
y 2+n

y 1+n
f 2+n

f Results 0P
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Figure 2: Parallel Implementation of Explicit 2-Point Block Method 

 
Master (Processor 1)  
      Compute N equations of y at first point 
 Send N equations of y at first point to worker 
 Receive N equations of y at second point from worker 
 Call Function Evaluation at first point 

 Send function evaluation at first point to worker 
 Receive function evaluation at second point from worker 
 
Worker (Processor 2)    

 Compute N equations of y at second point  
 Send N equations of y at second point to master 
 Receive N equations of y at first point from master 
 Call Function Evaluation at second point  
 Send function evaluation at second point to master 

 Receive function evaluation at first point from master 

 

 
Figure 3: Pseudo-code of the Parallel Implementation of the Explicit 2-Point Block Method 

 

Parallel Implementation of Explicit 3-Point Block Method 

In the sequential algorithm, explicit 3-point block method is implemented in 

the manner as shown in Figure 4. One processor 0P  is used to calculate 

1+n
y 2+n

y

1+n
f 2+n

f

Synchronization 

Results 

0P 1
P

0 1
  and  P P
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value y at the first point, followed by y  at the second point and at the third 

point. Then, function evaluations 1+n
f , 2+n

f  and 3+n
f  are computed.  

 

 
 

Figure 4: Sequential Implementation of Explicit 3-Point Block Method 
 

 
 

Figure 5: Parallel Implementation of Explicit 3-Point Block Method 
 

Master (Processor 1)  
      Compute N equations of y at first point 
 Send N equations of y at first point to worker 1 
 Send N equations of y at first point to worker 2 
 Receive N equations of y at second point from worker 1 

 Receive N equations of y at third point from worker 2 
 Call Function Evaluation at first point 
 Send function evaluation at first point to worker 1 
 Send function evaluation at first point to worker 2 
 Receive function evaluation at second point from worker 1 
 Receive function evaluation at third point from worker 2 
   
 

Figure 6: Pseudo-code of the Parallel Implementation of the Explicit 3-Point Block Method 
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Worker 1 (Processor 2)    

 Compute N equations of y at second point  
 Send N equations of y at second point to master 

 Send N equations of y at second point to worker 2 
 Receive N equations of y at first point from master 
 Receive N equations of y at third point from worker 2 
 
 Call Function Evaluation at second point  
 Send function evaluation at second point to master 
 Send function evaluation at second point to worker 2 
 Receive function evaluation at first point from master 

 Receive function evaluation at third point from worker 2 
 
Worker 2 (Processor 3)    

 Compute N equations of y at third point  
 Send N equations of y at third point to master 
 Send N equations of y at third point to worker 1 
 Receive N equations of y at first point from master 
 Receive N equations of y at second point from worker 1 
 Call Function Evaluation at third point  

 Send function evaluation at third point to master 
 Send function evaluation at third point to worker 1 
 Receive function evaluation at first point from master 
 Receive function evaluation at second point from worker 1 

 
 

Figure 6 (continued): Pseudo-code of the Parallel Implementation of the Explicit 3-Point 
Block Method 

 
 

The parallel explicit 3-point block method is implemented by 
assigning the computational tasks for each point to three processors. Each 

processor calculates the value y and the function evaluation f  

simultaneously as shown in Figure 5. In the parallel program, the computed 

y and f  must be made available to all participating processors by the 

blocking send and receive operations. 

 
 

TEST PROBLEMS 

In this section, we present numerical results when a standard set of 
problems are solved using the methods given in previous section. Before 

tabulating the numerical results, let us review the metric used to measure 

the performance of the sequential and parallel algorithms.   
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For sequential programs, the metric to measure the performance is 

the sequential time,
s

t , which is the time period elapsed between the 

beginning and the end of the algorithm execution.   

 

For parallel programs, the metrics for measuring performances are as 
follows: 

 

1. The number of processors, p used. 

2. Parallel time, pt that is the time period elapsed between the beginning 

of the first processor and the end of the last processor during the 
execution of the algorithm.   

3. Speed-up, pS compares the parallel running time, pt  of an algorithm 

that uses p processors to solve a particular problem, to the sequential 

running time, 
s

t , which is given by: 

 

.s

p

p

t
S

t
=  

 

It can also be defined as the ratio of the execution time of the 
parallel algorithm on a single processor and the execution time of the 

parallel algorithm on p processors, that is:  

         

1
.

p

p

p

t
S

t

=
=  

4. 
1

.
ps
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p p

ttS
E

p pt pt
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= = =  

 

p
E  is the efficiency of the parallel algorithm and it must be less or equal to 

one ( 1
p

E ≤ ).  If Ep = 1, the speed-up is said to be perfect.  Perfect speed-up 

is rarely ever achievable.  

 

To evaluate the performance of the parallel explicit block methods, 
an extensive set of numerical experiments has been carried out on a Sun 

Fire V1280 system equipped with 8 UltraSPARC III Cu processors at 1.2 

GHz. These experiments were based on a collection of two test problems as 

given below. 
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Problem 1: Lagrange equation for the hanging string 

 

( )

( )

( )

( ) ( )( )

2

1 1 2

2

2 1 2 3

2

3 2 3 4

2

1

3 2

2 5 3

1 2 1
N N N

y K y y

y K y y y

y K y y y

y K N y N y−

″ = − +

″ = − +

″ = − +

″ = − − −

⋮

 

 

N = Number of equations, 0 x b≤ ≤ , b = end of interval. 
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Source: Majid and Suleiman (2009). 

 

 

Problem 2: Moon – the celestial mechanics problem 
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Initial data: ( ) ( ) ( ) ( )0 0 0 00 0 0 0 0x y x y
′ ′= = = =  

 

( ) ( )

( ) ( )

2 2
0 30cos 400, 0 0.8sin

100 100

2 2
0 30sin , 0 0.8cos 1

100 100

i i

i i

x x
i i

y y
i i

π π

π π

   ′= + =   
   

   ′= = − +   
   

 

 

=N Number of equations, 0 t b≤ ≤ , b = end of the interval 

 

Source: Majid and Suleiman (2009). 
 

 

NUMERICAL RESULTS 

Tables 1 and 2 give the performance comparison between the 
sequential and parallel block methods for solving large system of equations 

in terms of the total number of steps taken and execution time. The 

notations used in the tables are as follows: 

 
h  Step size used. 

 

METHOD Method employed. 
 

TSTEP  Total number of steps taken to obtain the solution. 

 

TIME  Execution time taken in seconds. 
 

SE1PN Sequential implementation of explicit 1-point method based 

on Newton-Gregory backward interpolation formula. 
 

SE2PBN Sequential implementation of explicit 2-point block method 

based on Newton-Gregory backward interpolation formula. 
 

PE2PBN Parallel implementation of explicit 2-point block method 

based on Newton-Gregory backward interpolation formula. 

 
SE3PBN Sequential implementation of explicit 3-point block method 

based on Newton-Gregory backward interpolation formula. 
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PE3PBN Parallel implementation of explicit 3-point block method 

based on Newton-Gregory backward interpolation formula. 

 
Figures 7 to 8 demonstrate the speedup comparison between parallel 2-point 

and 3-point block methods as the number of equations increase. The 
speedups versus the number of processors with explicit block methods are 

shown in Figures 9 to 10. On the other hand, Figures 11 to 12 show the 

efficiency comparison between parallel 2-point and 3-point block methods 
as the number of equations increase. For the speedup and efficiency 

comparisons, we do it only for 510h −=  because the results are quite similar 

for other value of h.  
 

TABLE 1: Performance comparison between sequential and parallel explicit 
block methods for solving Problem 1 when N=3000, b=1 

 

h METHOD TSTEP TIME (seconds)  

2
10

−
 

E1PN 
SE2PBN 
PE2PBN 
SE3PBN 

PE3PBN 

100 
52 
52 
36 

36  

0.136 
0.125 
0.087 
0.136 

0.079 

3
10

−
 

E1PN 
SE2PBN 
PE2PBN 
SE3PBN 
PE3PBN 

1000 
502 
502 
336 
336  

1.089 
0.884 
0.614 
0.865 
0.489 

4
10

−
 

E1PN 
SE2PBN 
PE2PBN 
SE3PBN 

PE3PBN 

10000 
5002 
5002 
3336 

3336  

10.800 
8.647 
5.979 
8.328 

4.615 

5
10

−
 

E1PN 
SE2PBN 
PE2PBN 
SE3PBN 
PE3PBN 

100000 
50002 
50002 
33336 
33336  

107.903 
86.288 
59.532 
82.976 
45.440 
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TABLE 2: Performance comparison between sequential and parallel explicit 
block methods for solving Problem 2 when N=100, b=1 

 

h METHOD TSTEP TIME (seconds)  

210−
 

E1PN 
SE2PBN 

PE2PBN 
SE3PBN 
PE3PBN 

100 
52 

52 
36 
36  

1.960 
1.956 

1.072 
1.988 
0.804 

    

310−
 

E1PN 
SE2PBN 
PE2PBN 
SE3PBN 

PE3PBN 

1000 
502 
502 
336 

336  

18.959 
18.285 
9.208 

18.279 

6.230 
    

4
10

−
 

E1PN 
SE2PBN 
PE2PBN 
SE3PBN 
PE3PBN 

10000 
5002 
5002 
3336 
3336  

181.641 
181.327 
91.024 

181.239 
60.679 

    

5
10

−
 

E1PN 
SE2PBN 
PE2PBN 
SE3PBN 
PE3PBN 

100000 
50002 
50002 
33336 
33336  

1815.485 
1810.101 
906.866 

1809.905 
605.816 
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Figure 7: Speedup Comparison between PE2PBN and PE3PBN for Solving Problem 1 when 
5

10h
−=  
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Figure 8: Speedup Comparison between PE2PBN and PE3PBN for Solving Problem 2 when 
5

10h
−=  
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Figure 9: Speedup versus Number of Processors with Explicit Block Methods for Solving 

Problem 1 when 5
10h

−=  
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Figure 10: Speedup versus Number of Processors with Explicit Block Methods for Solving 

Problem 2 when 5
10

−=h  
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Figure 11: Efficiency Comparison between PE2PBN and PE3PBN for Solving Problem 1 

when 5
10h

−=  
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Figure 12: Efficiency Comparison between PE2PBN and PE3PBN for Solving Problem 2 

when 5
10h

−=  
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DISCUSSION AND CONCLUSION 

The focus here is the performance metrics of the parallel and 

sequential codes namely the total number of steps taken, execution time, 

speedup and efficiency.  
 

The results in the Tables 1 and 2 indicate that the sequential and 

parallel implementation for explicit block methods are superior compared to 
the non-block counterparts in term of total number of steps taken to obtain 

the solution. The 2-point and 3-point block methods reduce the total steps to 

almost one half and one third respectively compared to 1-point method. 
 

The experiments with the block and non-block methods are 

performed using the interval [ ]0,1 . Since the integration interval does not 

influence the outcome of the performance comparison, this interval is 

chosen such that all experiments could be completed within a reasonable 
amount of time. 

 

The parallel implementations achieve better execution time than the 
sequential implementations when tested on large systems of equations. The 

primary reason for the better execution time is the computation tasks within 

a block are carried out simultaneously on separate processors. The parallel 

implementations achieve the improvement greater than 30% when solving 
Problem 1 and 50% when solving Problem 2. 

 

Figures 7 and 8 show the speedup values measured with the parallel 
implementations. The best execution time of the sequential codes is used as 

a reference for the speedup calculation. 

 
The speedup values gained by the parallel algorithms with respect 

to number of equations for step size 510h −=  are shown in Figures 7 and 8.  

The results indicated that for a fixed number of processors, as the number of 
equations increases, the speedup increases.  

 

In general, the speedups gained by the parallel explicit 3-point 
block (PE3PB) are higher than the parallel explicit 2-point block (PE2PB) 

when solving large systems of equations.  

 

Figures 9 and 10 demonstrate that the speedup increases linearly 

with the number of processors for the case 100N = in problem 2. Overall, 

we can conclude that the algorithm is highly parallel and has clear 
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superiority over sequential approach particularly as the number of equations 

increase as in Problem 2. The reason why the speedup is better for Problem 
2 compared to Problem 1 is that in Problem 2 the function evaluation 

involved the calculation of distance r, hence more computational tasks are 

needed which are assigned to different processors concurrently. Thus, the 

parallel implementations work efficiently compared to the sequential one. 
 

Figures 11 to 12 indicated that large number of equations lead to 

better efficiency. It is apparent that the PE2PB methods have better 
efficiency compared to PE3PB  methods when solving Problem 1. The 

principal reason for the efficiency in PE3PB  code is parallel overhead. This 

could be time spent in process startup and interprocess communication 
when solving Problem 1. 

 

However the efficiencies of parallel implementation using two and 

three processors are similar when solving Problem 2. Both the parallel 2-
point block and 3-point block methods gain the efficiency to almost one. 

Therefore, more computation tasks are involved when solving Problem 2 

compared to Problem 1.  
 

In the parallel algorithms, the computational tasks are assigned to 

different processors concurrently. Hence, the parallel implementations work 
efficiently when solving Problem 2 compared to sequential 

implementations. 

 

Hence we can conclude that the parallel 2-point and 3-point block 
methods have shown superiority in terms of total steps, execution time, 

speedup and efficiency over the 1-point method for solving large system of 

equations. 
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