
Malaysian Journal of Mathematical Sciences 5(2): 143-160 (2011)

Parallel Implementation of Explicit 2 and 3-Point Block Method

for Solving System of Special Second Order ODEs Directly

1
Yap Lee Ken,

2,3
Fudziah Ismail,

2,3

Zanariah Majid and
3,4

Mohamed Othman
1
Faculty of Engineering and Science, Universiti Tunku Abdul Rahman,

53300 Setapak, Kuala Lumpur, Malaysia

2
Faculty of Science,Universiti Putra Malaysia

43400 UPM Serdang Selangor, Malaysia

3
Institute for Mathematical Research, Universiti Putra Malaysia

43400 UPM Serdang, Selangor, Malaysia

4
Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

E-mail: fudziah@math.upm.edu.my

ABSTRACT

In this paper the explicit 2 and 3-point block method for solving large systems of
special second order ODEs directly is discussed. Codes based on the methods are
executed in sequential and parallel. The numerical results show that parallel
execution of the methods is more efficient compared to sequential counterpart for
solving the large system of special second order ODEs.

INTRODUCTION

The desire for parallel Initial Value Problem (IVP) solvers arises

from the need to solve many significant problems faster than is currently

possible. This is because the computational time on conventional sequential
machine is so large that it affects the productivity of engineers and

researchers.

According to Gear and Xuhai (1993) parallelism in IVP solvers can

be classified into two main categories

• Parallelism across the method or equivalently parallelism across time

• Parallelism across the system or equivalently parallelism across

space.

Yap Lee Ken, Fudziah Ismail, Zanariah Majid & Mohamed Othman

144 Malaysian Journal of Mathematical Sciences

Parallelism across the method is the possibility of distributing the
computational effort of each integration step among the processors.

Parallelism across the problem is the possibility of partitioning the system

of equations by assigning one single equation or block of them to a
processor for concurrent integration. Here we are focusing on the first type

of parallelism that is parallelism across the method. However most methods

for solving IVPs are by nature step by step method the approximation to the

solution of the IVP by methods like Runge-Kutta (RK) and Multistep
method evolves one point at a time, which makes them less favourable for

parallel implementation. This situation requires the construction of new

methods specifically designed for parallel execution.

Burrage (1993) and Cash (1985) have proposed the used of parallel

Runge-Kutta methods for solving first order ODEs. Cash (1985) derived

explicit and diagonally implicit block Runge-Kutta method which can be
exploited for the purpose of parallel implementation. Majid and Suleiman

(2009) proposed block method for solving first order ODEs which can be

executed in parallel. In this paper we have developed sequential and parallel
algorithms based on the method developed by Yap et. al (2008) and used

them to solve special second order initial value problems. We hope that by

parallelizing the algorithms, a more effective code can be developed.

PROBLEM DESCRIPTION AND OBJECTIVES

Birta and Abou-Rabia (1987) stated that parallelism across the

method for the solution of ODEs has its basis in a class of techniques

referred to as block methods. Block methods have been discussed in detail
in Majid and Suleiman (2009) and Omar et al. (2002).

Assume that the system to be solved is described by N (the number

of equations in the system) special second order ODEs of the form

(),y f x y′′ = , ()y a η= , ()y a η′ ′= , bxa ≤≤ . (1)

Parallel Implementation of Explicit 2 and 3-Point Block Method for Solving System of Special Second

Order ODEs Directly

 Malaysian Journal of Mathematical Sciences 145

The r-point k-block method for Equation (1) is represented by the

computation scheme

() =
m

YA 0 ∑∑
=

−

=

− +
k

i

im

i
k

i

im

i
FBhYA

0

)(2

1

)(
 (2)

where



















=



















=

+

+

+

+

+

+

rn

n

n

m

rn

n

n

m

f

f

f

F

y

y

y

Y
⋮⋮

2

1

2

1

, (for …1,0, == mmrn),
)()(, ii BA are r

by r matrices. The block scheme is explicit if the coefficient matrix
)0(

B is
a null matrix.

In the explicit r-point block method, the interval []ba, is divided

into series of blocks with each block containing r points. Each application

of the formulae generates a block of r new equally spaced solution values

simultaneously. The computational tasks at each point within a block are
sufficiently independent and considered as separate task. Therefore, the

computation tasks can be performed simultaneously by assigning the tasks

to different processors.

Yap et al. (2008), have derived the explicit block methods of order

four based on Newton-Gregory backward difference formula designed for
special second order ODEs. The methods are:

Explicit 2-Point Block Method:



































−

−
+



































−

−
+

















−
+















−
=

















−

−

−

−

−−

+

+

2

3

12

2

31

2

1

3

16

3

4
3

1

12

1

3

20

3

20
6

7

12

5

10

00

20

21

10

01

n

n

n

n

n

n

n

n

n

n

f

f

f

f
h

y

y

y

y

y

y

Yap Lee Ken, Fudziah Ismail, Zanariah Majid & Mohamed Othman

146 Malaysian Journal of Mathematical Sciences

Explicit 3-Point Block Method:





























































−

−

−

+







































−

−

−

+

































−

+

































−

−

=

































−

−

−

−

−

−

−

−

−

−

+

+

+

3

4

5

1

2

2

3

4

5

1

2

3

2

1

4

27
00

3

4
00

12

1
00

2

45

4

135
27

3

20

3

20

3

16
6

7

12

5

3

1

100

000

000

200

201

210

100

010

001

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

f

f

f

f

f

f

h

y

y

y

y

y

y

y

y

y

PARALLEL IMPLEMENTATION

Parallel Implementation of the Explicit 2-Point Block Method

The sequential implementation of the explicit 2-point block method is

shown in Figure 1. In the sequential algorithm, one processor 0P (the first

processor is always denoted as)0P is used to calculate the first point 1+n
y

and followed by the evaluation of the second point 2+n
y . The function

evaluation 1+n
f is then computed using 1+n

y and followed by function

evaluation 2+n
f using 2+n

y .

Figure 1: Sequential Implementation of Explicit 2-Point Block Method

On the other hand, in the parallel algorithm, 1+n
y and 2+n

y are

assigned to two processors 0P and 1P as shown in Figure 2. Each processor

is responsible for computing the assigned y . All function evaluations are

performed simultaneously.

1+n
y 2+n

y 1+n
f 2+n

f Results 0P

Parallel Implementation of Explicit 2 and 3-Point Block Method for Solving System of Special Second

Order ODEs Directly

 Malaysian Journal of Mathematical Sciences 147

Figure 2: Parallel Implementation of Explicit 2-Point Block Method

Master (Processor 1)
 Compute N equations of y at first point
 Send N equations of y at first point to worker
 Receive N equations of y at second point from worker
 Call Function Evaluation at first point

 Send function evaluation at first point to worker
 Receive function evaluation at second point from worker

Worker (Processor 2)

 Compute N equations of y at second point
 Send N equations of y at second point to master
 Receive N equations of y at first point from master
 Call Function Evaluation at second point
 Send function evaluation at second point to master

 Receive function evaluation at first point from master

Figure 3: Pseudo-code of the Parallel Implementation of the Explicit 2-Point Block Method

Parallel Implementation of Explicit 3-Point Block Method

In the sequential algorithm, explicit 3-point block method is implemented in

the manner as shown in Figure 4. One processor 0P is used to calculate

1+n
y 2+n

y

1+n
f 2+n

f

Synchronization

Results

0P 1
P

0 1
 and P P

Yap Lee Ken, Fudziah Ismail, Zanariah Majid & Mohamed Othman

148 Malaysian Journal of Mathematical Sciences

value y at the first point, followed by y at the second point and at the third

point. Then, function evaluations 1+n
f , 2+n

f and 3+n
f are computed.

Figure 4: Sequential Implementation of Explicit 3-Point Block Method

Figure 5: Parallel Implementation of Explicit 3-Point Block Method

Master (Processor 1)
 Compute N equations of y at first point
 Send N equations of y at first point to worker 1
 Send N equations of y at first point to worker 2
 Receive N equations of y at second point from worker 1

 Receive N equations of y at third point from worker 2
 Call Function Evaluation at first point
 Send function evaluation at first point to worker 1
 Send function evaluation at first point to worker 2
 Receive function evaluation at second point from worker 1
 Receive function evaluation at third point from worker 2

Figure 6: Pseudo-code of the Parallel Implementation of the Explicit 3-Point Block Method

1+n
y 2+n

y 3+n
y 1+n

f 2+n
f 3+n

f Results
0P

1+n
f 3+n

f2+n
f

Results

3+n
y

Synchronization

1+n
y 2+n

y

Synchronization

210 and , PPP

0P 1P 2P

Parallel Implementation of Explicit 2 and 3-Point Block Method for Solving System of Special Second

Order ODEs Directly

 Malaysian Journal of Mathematical Sciences 149

Worker 1 (Processor 2)

 Compute N equations of y at second point
 Send N equations of y at second point to master

 Send N equations of y at second point to worker 2
 Receive N equations of y at first point from master
 Receive N equations of y at third point from worker 2

 Call Function Evaluation at second point
 Send function evaluation at second point to master
 Send function evaluation at second point to worker 2
 Receive function evaluation at first point from master

 Receive function evaluation at third point from worker 2

Worker 2 (Processor 3)

 Compute N equations of y at third point
 Send N equations of y at third point to master
 Send N equations of y at third point to worker 1
 Receive N equations of y at first point from master
 Receive N equations of y at second point from worker 1
 Call Function Evaluation at third point

 Send function evaluation at third point to master
 Send function evaluation at third point to worker 1
 Receive function evaluation at first point from master
 Receive function evaluation at second point from worker 1

Figure 6 (continued): Pseudo-code of the Parallel Implementation of the Explicit 3-Point
Block Method

The parallel explicit 3-point block method is implemented by
assigning the computational tasks for each point to three processors. Each

processor calculates the value y and the function evaluation f

simultaneously as shown in Figure 5. In the parallel program, the computed

y and f must be made available to all participating processors by the

blocking send and receive operations.

TEST PROBLEMS

In this section, we present numerical results when a standard set of
problems are solved using the methods given in previous section. Before

tabulating the numerical results, let us review the metric used to measure

the performance of the sequential and parallel algorithms.

Yap Lee Ken, Fudziah Ismail, Zanariah Majid & Mohamed Othman

150 Malaysian Journal of Mathematical Sciences

For sequential programs, the metric to measure the performance is

the sequential time,
s

t , which is the time period elapsed between the

beginning and the end of the algorithm execution.

For parallel programs, the metrics for measuring performances are as
follows:

1. The number of processors, p used.

2. Parallel time, pt that is the time period elapsed between the beginning

of the first processor and the end of the last processor during the
execution of the algorithm.

3. Speed-up, pS compares the parallel running time, pt of an algorithm

that uses p processors to solve a particular problem, to the sequential

running time,
s

t , which is given by:

.s

p

p

t
S

t
=

It can also be defined as the ratio of the execution time of the
parallel algorithm on a single processor and the execution time of the

parallel algorithm on p processors, that is:

1
.

p

p

p

t
S

t

=
=

4.
1

.
ps

p

p p

ttS
E

p pt pt

=
= = =

p
E is the efficiency of the parallel algorithm and it must be less or equal to

one (1
p

E ≤). If Ep = 1, the speed-up is said to be perfect. Perfect speed-up

is rarely ever achievable.

To evaluate the performance of the parallel explicit block methods,
an extensive set of numerical experiments has been carried out on a Sun

Fire V1280 system equipped with 8 UltraSPARC III Cu processors at 1.2

GHz. These experiments were based on a collection of two test problems as

given below.

Parallel Implementation of Explicit 2 and 3-Point Block Method for Solving System of Special Second

Order ODEs Directly

 Malaysian Journal of Mathematical Sciences 151

Problem 1: Lagrange equation for the hanging string

()

()

()

() ()()

2

1 1 2

2

2 1 2 3

2

3 2 3 4

2

1

3 2

2 5 3

1 2 1
N N N

y K y y

y K y y y

y K y y y

y K N y N y−

″ = − +

″ = − +

″ = − +

″ = − − −

⋮

N = Number of equations, 0 x b≤ ≤ , b = end of interval.

1K = , the initial values () ()0 0 0
i i

y y
′= = except () ()2 20 0 1

N N
y y− −

′= = ,

Source: Majid and Suleiman (2009).

Problem 2: Moon – the celestial mechanics problem

()

()

3
0,

3
0,

N
j i

i j

j j i ij

N
j i

i j

j j i ij

x x
x m

r

y y
y m

r

γ

γ

= ≠

= ≠

−″ =

−″ =

∑

∑

 where 0,1, ,i N= …

() ()()
1

2 2 2
, , 0,1, ,

ij i j i j
r x x y y i j N= − + − = …

3

06.672, 60, 7 10 , 1,2, , .
i

m m i Nγ −= = = × = …

Yap Lee Ken, Fudziah Ismail, Zanariah Majid & Mohamed Othman

152 Malaysian Journal of Mathematical Sciences

Initial data: () () () ()0 0 0 00 0 0 0 0x y x y
′ ′= = = =

() ()

() ()

2 2
0 30cos 400, 0 0.8sin

100 100

2 2
0 30sin , 0 0.8cos 1

100 100

i i

i i

x x
i i

y y
i i

π π

π π

   ′= + =   
   

   ′= = − +   
   

=N Number of equations, 0 t b≤ ≤ , b = end of the interval

Source: Majid and Suleiman (2009).

NUMERICAL RESULTS

Tables 1 and 2 give the performance comparison between the
sequential and parallel block methods for solving large system of equations

in terms of the total number of steps taken and execution time. The

notations used in the tables are as follows:

h Step size used.

METHOD Method employed.

TSTEP Total number of steps taken to obtain the solution.

TIME Execution time taken in seconds.

SE1PN Sequential implementation of explicit 1-point method based

on Newton-Gregory backward interpolation formula.

SE2PBN Sequential implementation of explicit 2-point block method

based on Newton-Gregory backward interpolation formula.

PE2PBN Parallel implementation of explicit 2-point block method

based on Newton-Gregory backward interpolation formula.

SE3PBN Sequential implementation of explicit 3-point block method

based on Newton-Gregory backward interpolation formula.

Parallel Implementation of Explicit 2 and 3-Point Block Method for Solving System of Special Second

Order ODEs Directly

 Malaysian Journal of Mathematical Sciences 153

PE3PBN Parallel implementation of explicit 3-point block method

based on Newton-Gregory backward interpolation formula.

Figures 7 to 8 demonstrate the speedup comparison between parallel 2-point

and 3-point block methods as the number of equations increase. The
speedups versus the number of processors with explicit block methods are

shown in Figures 9 to 10. On the other hand, Figures 11 to 12 show the

efficiency comparison between parallel 2-point and 3-point block methods
as the number of equations increase. For the speedup and efficiency

comparisons, we do it only for 510h −= because the results are quite similar

for other value of h.

TABLE 1: Performance comparison between sequential and parallel explicit
block methods for solving Problem 1 when N=3000, b=1

h METHOD TSTEP TIME (seconds)

2
10

−

E1PN
SE2PBN
PE2PBN
SE3PBN

PE3PBN

100
52
52
36

36

0.136
0.125
0.087
0.136

0.079

3
10

−

E1PN
SE2PBN
PE2PBN
SE3PBN
PE3PBN

1000
502
502
336
336

1.089
0.884
0.614
0.865
0.489

4
10

−

E1PN
SE2PBN
PE2PBN
SE3PBN

PE3PBN

10000
5002
5002
3336

3336

10.800
8.647
5.979
8.328

4.615

5
10

−

E1PN
SE2PBN
PE2PBN
SE3PBN
PE3PBN

100000
50002
50002
33336
33336

107.903
86.288
59.532
82.976
45.440

Yap Lee Ken, Fudziah Ismail, Zanariah Majid & Mohamed Othman

154 Malaysian Journal of Mathematical Sciences

TABLE 2: Performance comparison between sequential and parallel explicit
block methods for solving Problem 2 when N=100, b=1

h METHOD TSTEP TIME (seconds)

210−

E1PN
SE2PBN

PE2PBN
SE3PBN
PE3PBN

100
52

52
36
36

1.960
1.956

1.072
1.988
0.804

310−

E1PN
SE2PBN
PE2PBN
SE3PBN

PE3PBN

1000
502
502
336

336

18.959
18.285
9.208

18.279

6.230

4
10

−

E1PN
SE2PBN
PE2PBN
SE3PBN
PE3PBN

10000
5002
5002
3336
3336

181.641
181.327
91.024

181.239
60.679

5
10

−

E1PN
SE2PBN
PE2PBN
SE3PBN
PE3PBN

100000
50002
50002
33336
33336

1815.485
1810.101
906.866

1809.905
605.816

Parallel Implementation of Explicit 2 and 3-Point Block Method for Solving System of Special Second

Order ODEs Directly

 Malaysian Journal of Mathematical Sciences 155

0

1.326
1.419 1.424 1.441 1.442 1.449

0

1.446

1.733 1.765 1.805 1.808 1.826

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500 2000 2500 3000

Number of Equations

S
p

e
e
d

u
p

Parallel E2PBN

Parallel E3PBN

Figure 7: Speedup Comparison between PE2PBN and PE3PBN for Solving Problem 1 when
5

10h
−=

0

1.802
1.938 1.960 1.976 1.986 1.992 1.992 1.994 1.995 1.996

0

2.430

2.781 2.840 2.933 2.957 2.967 2.975 2.984 2.985 2.988

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

Number of Equations

S
p

e
e
d

u
p

Parallel E2PBN

Parallel E3PBN

Figure 8: Speedup Comparison between PE2PBN and PE3PBN for Solving Problem 2 when
5

10h
−=

Yap Lee Ken, Fudziah Ismail, Zanariah Majid & Mohamed Othman

156 Malaysian Journal of Mathematical Sciences

1

2

3

1

1.449

1.826

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 3

Number of Processors

S
p

e
e
d

u
p

Ideal

Equation 3000

Figure 9: Speedup versus Number of Processors with Explicit Block Methods for Solving

Problem 1 when 5
10h

−=

1

2

3

1

1.996

2.988

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 3

Number of Processors

S
p

e
e
d

u
p

Ideal

Equation 100

Figure 10: Speedup versus Number of Processors with Explicit Block Methods for Solving

Problem 2 when 5
10

−=h

Parallel Implementation of Explicit 2 and 3-Point Block Method for Solving System of Special Second

Order ODEs Directly

 Malaysian Journal of Mathematical Sciences 157

0

0.663
0.709 0.712 0.720 0.721 0.725

0

0.482

0.578 0.588 0.602 0.603 0.609

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000

Number of Equations

E
ff

ic
ie

n
c
y

Parallel E2PBN

Parallel E3PBN

Figure 11: Efficiency Comparison between PE2PBN and PE3PBN for Solving Problem 1

when 5
10h

−=

0

0.901

0.969 0.980 0.988 0.993 0.996 0.996 0.997 0.997 0.998

0

0.810

0.927 0.947
0.978 0.986 0.989 0.992 0.995 0.995 0.996

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Number of Equations

E
ff

ic
ie

n
c
y

Parallel E2PBN

Parallel E3PBN

Figure 12: Efficiency Comparison between PE2PBN and PE3PBN for Solving Problem 2

when 5
10h

−=

Yap Lee Ken, Fudziah Ismail, Zanariah Majid & Mohamed Othman

158 Malaysian Journal of Mathematical Sciences

DISCUSSION AND CONCLUSION

The focus here is the performance metrics of the parallel and

sequential codes namely the total number of steps taken, execution time,

speedup and efficiency.

The results in the Tables 1 and 2 indicate that the sequential and

parallel implementation for explicit block methods are superior compared to
the non-block counterparts in term of total number of steps taken to obtain

the solution. The 2-point and 3-point block methods reduce the total steps to

almost one half and one third respectively compared to 1-point method.

The experiments with the block and non-block methods are

performed using the interval []0,1 . Since the integration interval does not

influence the outcome of the performance comparison, this interval is

chosen such that all experiments could be completed within a reasonable
amount of time.

The parallel implementations achieve better execution time than the
sequential implementations when tested on large systems of equations. The

primary reason for the better execution time is the computation tasks within

a block are carried out simultaneously on separate processors. The parallel

implementations achieve the improvement greater than 30% when solving
Problem 1 and 50% when solving Problem 2.

Figures 7 and 8 show the speedup values measured with the parallel
implementations. The best execution time of the sequential codes is used as

a reference for the speedup calculation.

The speedup values gained by the parallel algorithms with respect

to number of equations for step size 510h −= are shown in Figures 7 and 8.

The results indicated that for a fixed number of processors, as the number of
equations increases, the speedup increases.

In general, the speedups gained by the parallel explicit 3-point
block (PE3PB) are higher than the parallel explicit 2-point block (PE2PB)

when solving large systems of equations.

Figures 9 and 10 demonstrate that the speedup increases linearly

with the number of processors for the case 100N = in problem 2. Overall,

we can conclude that the algorithm is highly parallel and has clear

Parallel Implementation of Explicit 2 and 3-Point Block Method for Solving System of Special Second

Order ODEs Directly

 Malaysian Journal of Mathematical Sciences 159

superiority over sequential approach particularly as the number of equations

increase as in Problem 2. The reason why the speedup is better for Problem
2 compared to Problem 1 is that in Problem 2 the function evaluation

involved the calculation of distance r, hence more computational tasks are

needed which are assigned to different processors concurrently. Thus, the

parallel implementations work efficiently compared to the sequential one.

Figures 11 to 12 indicated that large number of equations lead to

better efficiency. It is apparent that the PE2PB methods have better
efficiency compared to PE3PB methods when solving Problem 1. The

principal reason for the efficiency in PE3PB code is parallel overhead. This

could be time spent in process startup and interprocess communication
when solving Problem 1.

However the efficiencies of parallel implementation using two and

three processors are similar when solving Problem 2. Both the parallel 2-
point block and 3-point block methods gain the efficiency to almost one.

Therefore, more computation tasks are involved when solving Problem 2

compared to Problem 1.

In the parallel algorithms, the computational tasks are assigned to

different processors concurrently. Hence, the parallel implementations work
efficiently when solving Problem 2 compared to sequential

implementations.

Hence we can conclude that the parallel 2-point and 3-point block
methods have shown superiority in terms of total steps, execution time,

speedup and efficiency over the 1-point method for solving large system of

equations.

REFERENCES

Birta, L.G. and Abou-Rabia, O. 1987. Parallel Block Predictor-Corrector

Methods for ODEs. IEEE Transactions on Computers. C-36(3):

299-311.

Burrage, K. 1993. Parallel Methods for Initial Value Problems. Applied

Numerical Mathematics. 11: 5-25.

Yap Lee Ken, Fudziah Ismail, Zanariah Majid & Mohamed Othman

160 Malaysian Journal of Mathematical Sciences

Cash, J. R. 1985. Block embedded explicit Runge-Kutta methods. Comput.

Math Appl. 11: 395-409.

Gear, C. W. and Xuhai, X. 1993. Parallelism Across Time in ODEs.
Applied Numerical Mathematic. 11: 45-68.

Majid, Z. and Suleiman, M. 2009. Parallel Direct Integration Variable Step

Block Method for Solving Large Systems of Higher Order Ordinary
Differential Equations, International Journal of Math and

Statistical Sciences. 1(1): 9-12.

Omar, Z., Suleiman, M., Saman, M. Y. and Evans, D. J. 2002. Parallel R-

point Explicit Block Methods for Solving Second Order ODEs

directly. International Journal of Computer Math. 79(3): 289-298.

Yap Lee Ken, Ismail, F., Suleiman M and Md. Amin, S. 2008. Block

Methods Based on Newton Interpolations for Solving Special

Second Order Ordinary Differential Equations Directly,
International Journal of Mathematics and Statistics. 4(3): 174-180.

